Percolation in a Hierarchical Lattice

نویسنده

  • Yilun Shang
چکیده

We study the percolation in the hierarchical lattice of order N where the probability of connection between two nodes separated by a distance k is of the form min{αβ−k,1}, α ≥ 0 and β > 0. We focus on the vertex degrees of the resulting percolation graph and on whether there exists an infinite component. For fixed β , we show that the critical percolation value αc(β ) is non-trivial, i.e., αc(β )∈ (0,∞), if and only if β ∈ (N,N2).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transmission of packets on a hierarchical network: Avalanches, statistics and explosive percolation

We discuss transport on load bearing branching hierarchical networks which can model diverse systems which can serve as models of river networks, computer networks, respiratory networks and granular media. We study avalanche transmissions and directed percolation on these networks, and on the V lattice, i.e., the strongest realization of the lattice. We find that typical realizations of the lat...

متن کامل

Diffusion on the scaling limit of the critical percolation cluster in the diamond hierarchical lattice

We construct critical percolation clusters on the diamond hierarchical lattice and show that the scaling limit is a graph directed random recursive fractal. A Dirichlet form can be constructed on the limit set and we consider the properties of the associated Laplace operator and diffusion process. In particular we contrast and compare the behaviour of the high frequency asymptotics of the spect...

متن کامل

The Sizes of Large Hierarchical Long-Range Percolation Clusters

We study a long-range percolation model in the hierarchical lattice ΩN of orderN where probability of connection between two nodes separated by distance k is of the form min{αβ−k, 1}, α ≥ 0 and β > 0. The parameter α is the percolation parameter, while β describes the long-range nature of the model. The ΩN is an example of so called ultrametric space, which has remarkable qualitative difference...

متن کامل

Phase Transition in Long-Range Percolation on Bipartite Hierarchical Lattices

We propose a family of bipartite hierarchical lattice of order N governed by a pair of parameters ℓ and γ. We study long-range percolation on the bipartite hierarchical lattice where any edge (running between vertices of unlike bipartition sets) of length k is present with probability p k = 1 - exp(-αβ (-k)), independently of all other edges. The parameter α is the percolation parameter, while ...

متن کامل

Long-range percolation on the hierarchical lattice

We study long-range percolation on the hierarchical lattice of order N , where any edge of length k is present with probability pk = 1 − exp(−β−kα), independently of all other edges. For fixed β, we show that αc(β) (the infimum of those α for which an infinite cluster exists a.s.) is non-trivial if and only if N < β < N. Furthermore, we show uniqueness of the infinite component and continuity o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012